Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Heliyon ; 10(5): e27033, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486776

RESUMO

Background: SARS-CoV-2 Omicron lineage contains variants with multiple sequence mutations relative to the ancestral strain particularly in the viral spike gene. These mutations are associated inter alia with loss of neutralization sensitivity to sera generated by immunization with vaccines targeting ancestral strains or prior infection with circulating (non-Omicron) variants. Here we present a comparison of vaccine formulation elicited cross neutralization responses using two different assay readouts from a subpopulation of a Phase II/III clinical trial. Methods: Human sera from a Phase II/III trial (NCT04762680) was collected and evaluated for neutralizing responses to SARS-CoV-2 spike antigen protein vaccines formulated with AS03 adjuvant, following a primary series of two-doses of ancestral strain vaccine in individuals who were previously unvaccinated or as an ancestral or variant strain booster vaccine among individuals previously vaccinated with the mRNA BNT162b2 vaccine. Results: We report that a neutralizing response to Omicron BA.1 is induced by the two-dose primary series in 89% of SARS-CoV-2-seronegative individuals. A booster dose of each vaccine formulation raises neutralizing antibody titers that effectively neutralizes Omicron BA.1 and BA.4/5 variants. Responses are highest after the monovalent Beta variant booster and similar in magnitude to human convalescent plasma titers. Conclusion: The findings of this study suggest the possibility to generate greater breadth of cross-neutralization to more recently emerging viral variants through use of a diverged spike vaccine in the form of a Beta variant booster vaccine.

2.
Nat Commun ; 15(1): 2254, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480689

RESUMO

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Células Epiteliais , Exercício Físico
3.
J Virol ; 98(1): e0135123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088562

RESUMO

SARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and Spike functions. Around 1,100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its Spike. Compared to the ancestral Spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-N-terminal domain and anti-receptor-binding domain monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 Spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the Spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1. (This study has been registered at ClinicalTrials.gov under registration no. NCT04750720.)IMPORTANCEOur results highlight the plasticity of SARS-CoV-2 Spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in a primary culture model, which are poorly understood.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , África , COVID-19/virologia , Pandemias , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Gigantes/virologia
4.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38045308

RESUMO

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

5.
Clin Pharmacol Ther ; 115(1): 86-94, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795693

RESUMO

Although anti-severe acute respiratory syndrome-coronavirus 2 antibody kinetics have been described in large populations of vaccinated individuals, we still poorly understand how they evolve during a natural infection and how this impacts viral clearance. For that purpose, we analyzed the kinetics of both viral load and neutralizing antibody levels in a prospective cohort of individuals during acute infection with alpha variant. Using a mathematical model, we show that the progressive increase in neutralizing antibodies leads to a shortening of the half-life of both infected cells and infectious viral particles. We estimated that the neutralizing activity reached 90% of its maximal level within 11 days after symptom onset and could reduce the half-life of both infected cells and circulating virus by a 6-fold factor, thus playing a key role to achieve rapid viral clearance. Using this model, we conducted a simulation study to predict in a more general context the protection conferred by pre-existing neutralization titers, due to either vaccination or prior infection. We predicted that a neutralizing activity, as measured by 50% effective dose > 103 , could reduce by 46% the risk of having viral load detectable by standard polymerase chain reaction assays and by 98% the risk of having viral load above the threshold of infectiousness. Our model shows that neutralizing activity could be used to define correlates of protection against infection and transmission.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Estudos Prospectivos , SARS-CoV-2
6.
Med ; 4(10): 664-667, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37837962

RESUMO

Antibodies effective against the recent Omicron sublineages are missing. By taking advantage of a multi-centric prospective cohort of immunocompromised individuals treated for mild-to-moderate COVID-19, Bruel et al. show that administration of 500 mg of sotrovimab induces serum neutralization and antibody-dependent cellular cytotoxicity of BQ.1.1 and XBB.1.5. Therefore, sotrovimab may remain a therapeutic option against these variants.


Assuntos
Anticorpos Monoclonais Humanizados , Hospedeiro Imunocomprometido , Humanos , Estudos Prospectivos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
Front Immunol ; 14: 1221961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559726

RESUMO

Background: The role of adaptive immune responses in long COVID remains poorly understood, with contrasting hypotheses suggesting either an insufficient antiviral response or an excessive immune response associated with inflammatory damage. To address this issue, we set to characterize humoral and CD4+ T cell responses in long COVID patients prior to SARS-CoV-2 vaccination. Methods: Long COVID patients who were seropositive (LC+, n=28) or seronegative (LC-, n=23) by spike ELISA assay were recruited based on (i) an initial SARS-CoV-2 infection documented by PCR or the conjunction of three major signs of COVID-19 and (ii) the persistence or resurgence of at least 3 symptoms for over 3 months. They were compared to COVID patients with resolved symptoms (RE, n=29) and uninfected control individuals (HD, n=29). Results: The spectrum of persistent symptoms proved similar in both long COVID groups, with a trend for a higher number of symptoms in the seronegative group (median=6 vs 4.5; P=0.01). The use a highly sensitive S-flow assay enabled the detection of low levels of SARS-CoV-2 spike-specific IgG in 22.7% of ELISA-seronegative long COVID (LC-) patients. In contrast, spike-specific IgG levels were uniformly high in the LC+ and RE groups. Multiplexed antibody analyses to 30 different viral antigens showed that LC- patients had defective antibody responses to all SARS-CoV-2 proteins tested but had in most cases preserved responses to other viruses. A sensitive primary T cell line assay revealed low but detectable SARS-CoV-2-specific CD4 responses in 39.1% of LC- patients, while response frequencies were high in the LC+ and RE groups. Correlation analyses showed overall strong associations between humoral and cellular responses, with exceptions in the LC- group. Conclusions: These findings provide evidence for two major types of antiviral immune responses in long COVID. Seropositive patients showed coordinated cellular and humoral responses at least as high as those of recovered patients. In contrast, ELISA-seronegative long COVID patients showed overall low antiviral responses, with detectable specific CD4+ T cells and/or antibodies in close to half of patients (52.2%). These divergent findings in patients sharing a comparable spectrum of persistent symptoms raise the possibility of multiple etiologies in long COVID.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais , Imunoglobulina G
8.
medRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398037

RESUMO

Background: Monoclonal antibodies (mAbs) targeting the spike of SARS-CoV-2 prevent severe COVID-19. Omicron subvariants BQ.1.1 and XBB.1.5 evade neutralization of therapeutic mAbs, leading to recommendations against their use. Yet, the antiviral activities of mAbs in treated patients remain ill-defined. Methods: We investigated neutralization and antibody-dependent cellular cytotoxicity (ADCC) of D614G, BQ.1.1 and XBB.1.5 in 320 sera from 80 immunocompromised patients with mild-to-moderate COVID-19 prospectively treated with mAbs (sotrovimab, n=29; imdevimab/casirivimab, n=34; cilgavimab/tixagevimab, n=4) or anti-protease (nirmatrelvir/ritonavir, n=13). We measured live-virus neutralization titers and quantified ADCC with a reporter assay. Findings: Only Sotrovimab elicits serum neutralization and ADCC against BQ.1.1 and XBB.1.5. As compared to D614G, sotrovimab neutralization titers of BQ.1.1 and XBB.1.5 are reduced (71- and 58-fold, respectively), but ADCC levels are only slightly decreased (1.4- and 1-fold, for BQ.1.1 and XBB.1.5, respectively). Interpretation: Our results show that sotrovimab is active against BQ.1.1 and XBB.1.5 in treated individuals, suggesting that it may be a valuable therapeutic option.

9.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770826

RESUMO

The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.


Assuntos
Imidazolinas , Transdução de Sinais , Ligantes , Simulação de Acoplamento Molecular , Receptores CXCR4 , Imidazóis/farmacologia
10.
Nat Commun ; 14(1): 824, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788246

RESUMO

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Assuntos
Anticorpos Neutralizantes , Vacina BNT162 , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , Antivirais , Infecções Irruptivas , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
11.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36415455

RESUMO

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.

12.
Cell Rep Med ; 3(12): 100850, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36450283

RESUMO

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Antivirais/uso terapêutico
13.
Med ; 3(12): 838-847.e3, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36228619

RESUMO

BACKGROUND: Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, which displays enhanced antibody escape properties. METHODS: Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta, and Omicron BA.1, BA.2, and BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. FINDINGS: Upon vaccination, serum Nab titers were decreased by 10-, 15-, and 25-fold for BA.1, BA.2, and BA.5, respectively, compared with D614G. We estimated that, after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong immunoglobulin A (IgA) response and a detectable Omicron-neutralizing activity. CONCLUSIONS: BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. FUNDING: Work in O.S.'s laboratory is funded by the Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID), HERA european funding and the NIH PICREID (grant no U01AI151758).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , Infecções Irruptivas , Anticorpos Neutralizantes
14.
J Virol ; 96(19): e0130122, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121299

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained genetically stable during the first 3 months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early-occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. IMPORTANCE The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions. The Alpha and Delta variants, which spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic compared to the original strain. Interestingly, Alpha and Delta both carried the mutations P681H/R in a cleavage site that made the spike more cleaved and more efficient at mediating viral fusion. We show here that variants with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of the D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite for the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
15.
EClinicalMedicine ; 51: 101576, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35891947

RESUMO

Background: The protective immunity against omicron following a BNT162b2 Pfizer booster dose among elderly individuals (ie, those aged >65 years) is not well characterised. Methods: In a community-based, prospective, longitudinal cohort study taking place in France in which 75 residents from three nursing homes were enrolled, we selected 38 residents who had received a two-dose regimen of mRNA vaccine and a booster dose of Pfizer BNT162b2 vaccine. We excluded individuals that did not receive three vaccine doses or did not have available sera samples. We measured anti-S IgG antibodies and neutralisation capacity in sera taken 56 (28-68) and 55 (48-64) days (median (range)) after the 2nd and 3rd vaccine doses, respectively. Antibodies targeting the SARS-CoV-2 Spike protein were measured with the S-Flow assay as binding antibody units per milliliter (BAU/mL). Neutralising activities in sera were measured as effective dilution 50% (ED50) with the S-Fuse assay using authentic isolates of delta and omicron BA.1. Findings: Among the 38 elderly individuals recruited to the cohort study between November 23rd, 2020 and April 29th, 2021, with median age of 88 (range 72-101) years, 30 (78.95%) had been previously infected with SARS-CoV-2. After three vaccine doses, serum neutralising activity was lower against omicron BA.1 (median ED50 of 774.5, range 15.0-34660.0) than the delta variant (median ED50 of 4972.0, range 213.7-66340.0), and higher among previously infected (ie, convalescent; median ED50 against omicron: 1088.0, range 32.6-34660.0) compared with infection-naive residents (median ED50 against omicron: 188.4, range 15.0-8918.0). During the French omicron wave in December 2021-January 2022, 75% (6/8) of naive residents were infected, compared to 25% (7/30) of convalescent residents (P=0.0114). Anti-Spike antibody levels and neutralising activity against omicron BA.1 after a third BNT162b2 booster dose were lower in those with breakthrough BA.1 infection (n=13) compared with those without (n=25), with a median of 1429.9 (range 670.9-3818.3) BAU/mL vs 2528.3 (range 695.4-8832.0) BAU/mL (P=0.029) and a median ED50 of 281.1 (range 15.0-2136.0) vs 1376.0 (range 32.6-34660.0) (P=0.0013), respectively. Interpretation: This study shows that elderly individuals who received three vaccine doses elicit neutralising antibodies against the omicron BA.1 variant of SARS-CoV-2. Elderly individuals who had also been previously infected showed higher neutralising activity compared with naive individuals. Yet, breakthrough infections with omicron occurred. Individuals with breakthrough infections had significantly lower neutralising titers compared to individuals without breakthrough infection. Thus, a fourth dose of vaccine may be useful in the elderly population to increase the level of neutralising antibodies and compensate for waning immunity. Funding: Institut Pasteur, Fondation pour la Recherche Médicale (FRM), European Health Emergency Preparedness and Response Authority (HERA), Agence nationale de recherches sur le sida et les hépatites virales - Maladies Infectieuses Emergentes (ANRS-MIE), Agence nationale de la recherche (ANR), Assistance Publique des Hôpitaux de Paris (AP-HP) and Fondation de France.

16.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35704748

RESUMO

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunoglobulina A , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
17.
Nat Med ; 28(6): 1297-1302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322239

RESUMO

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Humanos , Glicoproteínas de Membrana/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
18.
EBioMedicine ; 77: 103934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290827

RESUMO

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
19.
Ann Rheum Dis ; 81(5): 720-728, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35022159

RESUMO

OBJECTIVES: The emergence of strains of SARS-CoV-2 exhibiting increase viral fitness and immune escape potential, such as the Delta variant (B.1.617.2), raises concerns in immunocompromised patients. We aimed to evaluate seroconversion, cross-neutralisation and T-cell responses induced by BNT162b2 in immunocompromised patients with systemic inflammatory diseases. METHODS: Prospective monocentric study including patients with systemic inflammatory diseases and healthcare immunocompetent workers as controls. Primary endpoints were anti-spike antibodies levels and cross-neutralisation of Alpha and Delta variants after BNT162b2 vaccine. Secondary endpoints were T-cell responses, breakthrough infections and safety. RESULTS: Sixty-four cases and 21 controls not previously infected with SARS-CoV-2 were analysed. Kinetics of anti-spike IgG after BNT162b2 vaccine showed lower and delayed induction in cases, more pronounced with rituximab. Administration of two doses of BNT162b2 generated a neutralising response against Alpha and Delta in 100% of controls, while sera from only one of rituximab-treated patients neutralised Alpha (5%) and none Delta. Other therapeutic regimens induced a partial neutralising activity against Alpha, even lower against Delta. All controls and cases except those treated with methotrexate mounted a SARS-CoV-2 specific T-cell response. Methotrexate abrogated T-cell responses after one dose and dramatically impaired T-cell responses after two doses of BNT162b2. Third dose of vaccine improved immunogenicity in patients with low responses. CONCLUSION: Rituximab and methotrexate differentially impact the immunogenicity of BNT162b2, by impairing B-cell and T-cell responses, respectively. Delta fully escapes the humoral response of individuals treated with rituximab. These findings support efforts to improve BNT162b2 immunogenicity in immunocompromised individuals (ClinicalTrials.gov number, NCT04870411).


Assuntos
Vacina BNT162 , COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Hospedeiro Imunocomprometido , Imunogenicidade da Vacina , Metotrexato , Estudos Prospectivos , Rituximab , SARS-CoV-2
20.
Nat Commun ; 13(1): 521, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082297

RESUMO

HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of ß-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Controladores de Elite , Infecções por HIV/imunologia , HIV-1/imunologia , Receptores CCR5/metabolismo , Internalização do Vírus , Quimiocinas , Regulação para Baixo , Regulação da Expressão Gênica , Produtos do Gene gag/metabolismo , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe II , Humanos , Mutação , Receptores CCR5/genética , Receptores CXCR3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA